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Numerical modelling of nonlinear response of soil.
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Abstract

In this contribution, on the basis of the hierarchical approach [Desai, C.S., 1980. A general basis for yield, failure
and potential functions in plasticity. International Journal for Numerical and Analytical Methods in Geomechanics 4
(1980) 361–375], a constitutive model for the soil response in the elastoplastic range has been developed. The emphasis
has been placed on presenting the particular model characteristics, simulation of soil hardening and softening response
and the establishment of model nonassociativity. Based on standard available laboratory triaxial tests, a general pro-
cedure has been developed for determination of the material parameters of the constitutive model. All model param-
eters have been associated with quantities that can be determined from the experimental process ensuring thus the
physical meaning of the parameters. A companion paper focuses on the applications of this constitutive model to inves-
tigate strain localization phenomena in sand, and the role of the fluid components on strain localization in 3D saturated
sand specimen is addressed.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the finite element analysis of geotechnical problems, the choice of an appropriate constitutive model
may have a significant influence on the numerical results. The constitutive model should be able to capture
the main features of the mechanical behaviour of geomaterials under complex states of stress.
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In recent years, various types of constitutive models have been developed. Some of them appear to be
rather complex however, difficult to relate to material physical behaviour, while other models use param-
eters that cannot be obtained from common laboratory tests.

Based on the concept of state boundary surface, modified and refined forms of cap models for geological
materials were proposed by DiMaggio and Sandler (1971) and later by Baladi and Rohani (1979). Initially
the cap model was developed for sands and now has been successfully extended to other materials, such as
clays and rocks. Since the cap intersects the hydrostatic axis perpendicularly, this ensures that a state of
hydrostatic stress will cause only volumetric plastic deformation when associated plasticity theory is
applied.

Lade and Duncan (1975) have developed the isotropic elastic–plastic work hardening model for a cohe-
sionless soil. The model contains subsequent flow surface and a failure surface. The flow surface enclosed
by the failure surface has the same general surface as the failure surface, except for the differences in its
hardening parameters and its isotropic expansion around the hydrostatic axis. Instead of flow surface with
straight meridian line, Lade (1977) modified this model with the cap type of flow surface. The size of the cap
type of the flow surface is controlled by the plastic strains occurring during isotropic compression. It is
assumed that during material hardening, both the failure surface and the yield cap expand. This model
has been examined to some extent for the prediction of soil and pore pressures in undrained triaxial com-
pression tests on saturated sand by Lade (1978). A double hardening model consisting of shear and volu-
metric loading surfaces was established by Vermeer (1978) for the modelling of initial loading, unloading
and reloading of sand.

One of the main stumbling blocks of the classical plasticity theory based on associative flow rules and
commonly utilized flow surfaces like Druker–Prager or Coulomb is the overprediction of dilation. It
became therefore necessary, therefore to extend classical plasticity ideas to a non-associated form in which
the plastic potential functions and flow surface are defined separately (Davis, 1968).

Iwan (1967) extended the formulation of the classical incremental theory of plasticity and assumed work-
hardening behaviour and a non-associated flow rule. Instead of using a single flow surface, he postulated a
series of nested flow surfaces with each surface translating independently in a purely kinematic manner. The
same concept of using a series of nested flow surfaces was also proposed independently by Mróz (1967).

Every constitutive model discussed here has its advantages and its limitations. One model on its own
cannot adequately reproduce the behaviour of all soil materials under all conditions. A particular consti-
tutive model for engineering analyses should be chosen, based on the criterion that all the important
mechanical characteristics of the material under engineering conditions can be captured. An appropriate
constitutive model should be able to reflect the key characteristics of material experimental results. The
mathematical relationship of the model should be defined by parameters that can be determined from
standard test data. The constitutive formulation should result in a unique and stable stress–strain
relationship.

In this contribution, on the basis of the hierarchical approach proposed by Desai (1980), constitutive
models are developed to simulate the elastoplastic characterization of geomaterials (i.e. sand). The hierar-
chical approach permits evolution of models of progressively higher order from the basic constitutive equa-
tion representing associative behaviour. Higher order models are obtained by applying a perturbation or
correction to the basic constitutive equation (Desai et al., 1986). Hence, many of the most important
mechanical characteristics of geotechnical materials such as isotropic and anisotropic hardening, softening,
pressure sensitivity, associated and nonassociated plasticity can be captured through this approach. The
constitutive models are general and sufficiently simplified in terms of number of material parameters and
every parameter has a clear physical meaning.

In general, the proposed constitutive model is applicable for any frictional material. However, in this
contribution, only geomaterials are considered. The emphasis is placed on the presentation of the model
characteristics in both the hardening and the softening ranges of response, and the establishment of model
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nonassociativity. The general procedure of model parameters determination is presented. The model is cal-
ibrated on the basis of triaxial test results (Cheng et al., 2001) on ‘‘Eastern Scheldt’’ sand. Comparisons of
model predictions and laboratory measurements for various stress paths are presented.
2. Basic associative model

As indicated earlier, every constitutive model has its advantages and limitations. One of the major lim-
itations of commonly used cap and critical state models, is that the yielding is controlled by two separate
yield functions that intersect each other with a slope discontinuity. In associated plasticity theory, the incre-
mental plastic strain is assumed to be normal to the flow surface at the loading point. Thus, in case of two
intersecting flow surfaces, the direction of the incremental plastic strain is not defined uniquely at the point
of surface intersection. Thus the volumetric and shear response of the material cannot be properly
predicted.

The single surface plasticity model proposed by Desai (1980) includes most of the currently common
used plasticity models as special cases. The surface is continuous (smooth) and hence avoids the above men-
tioned discontinuity problems of multi-surface models.

The form of the model yield function is given by
F ¼ J 2

p2a
� �a � I1 þ R

pa

� �n

þ c � I1 þ R
pa

� �2
" #

� F s ¼ 0 ð1Þ
where I1 and J2 are first and second stress invariants respectively, pa is the atmospheric pressure with units
of stress, Parameter R represents the triaxial strength in tension, Fs is the function related to the shape of
the flow surface in the octahedral plane,
F s ¼ ð1� b � cos 3hÞm ð2Þ

where cos3h is defined as
cos 3h ¼ 3
ffiffiffi
3

p

2
� J 3

J 3=2
2

ð3Þ
in which J3 is the third invariant of the deviatoric stress and h is equivalent to the Lode angle. The value of
m in Eq. (2) is a material constant that is found to be equal to �0.5 for many geologic materials.

In standard soil triaxial tests, I1 + R = (r1 + 2r3) = 3 Æ p 0 and
ffiffiffiffiffi
J 2

p
¼ ðr1 � r3Þ=

ffiffiffi
3

p
¼ q=

ffiffiffi
3

p
. Therefore,

the yield function in Eq. (1) can be written also in terms of effective mean normal stress p 0 and deviator
stress q as
F ¼ q2

3p2a
� �a � 3p0

pa

� �n

þ c � 3p0

pa

� �2
" #

� F s ¼ 0 ð4Þ
where a, b, c and n in Eqs. (1) and (2) are material parameters.
Isotropic hardening/softening is described by means of parameter a. The values of a control the size of

the flow surface. It is typically defined as a function of deformation history. As a decreases, the size of the
flow surface increases, Fig. 1. When a = 0, the ultimate stress response surface of the material is attained.

The value of n determines the apex of the flow surface on the I1 �
ffiffiffiffiffi
J 2

p
or p 0 � q space. Parameter n is

related to the state of stress at which the material response changes from compaction to dilation. Its influ-
ence on the geometric characteristics of the surface is portrayed in Fig. 2. It is worth noticing that not only
the shape but also the size of the surface is influenced as well.
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Parameter c is related to the ultimate strength of the material. It denotes the slope of the ultimate stress
response surface. Parameter b is related to the trace of the flow surface on the octahedral plane. For b = 0
the trace is circular, Fig. 3(a). As b increases, the trace progressively becomes triangular, Fig. 3(b). The va-
lue of b should be less than or equal to 0.76 for the required convex surface. It is possible that some mate-
rials may exhibit concave yield surfaces, i.e. b > 0.76, however, such materials are not considered herein.

By defining b as a function of I1, it is possible to change the trace of the surface with confinement. For
some cementitious materials this is advantageous since experimental evidence indicates that for low confine-
ment levels the shape of the surface on the octahedral plane is triangular while for higher levels of confine-
ment it tends to circular.

According to experimental observations, for a stress path sensitive material, the ultimate stress response
surface of some geomaterials is not always a straight line on the I1 �

ffiffiffiffiffi
J 2

p
or p 0 � q space, but a curved one.

c can vary under different stress path. These will lead the numerical model can not capture mechanical char-
acteristics of the material under complicated engineering conditions. In order to enhance the applicability
of the classical yield function in Eq. (1), a modified form of the yield function is proposed and expressed in
Eq. (5). The benefit of choosing modified form of the yield function can be observed in the model verifica-
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Fig. 3. Plot of the F on the octahedral plane with different b values.
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tion part. The modification of the classical yield function is done by replacing the power 2 in Eq. (1) with
the parameter g:
F ¼ J 2

p2a
� �a � I1 þ R

pa

� �n

þ c � I1 þ R
pa

� �g� �
� F s ¼ 0 ð5Þ
Similar as Eq. (4), the modified yield function in Eq. (5) can be written also in terms of effective mean
normal stress p 0 and deviator stress q as
F ¼ q2

3p2a
� �a � 3p0

pa

� �n

þ c � 3p0

pa

� �g� �
� F s ¼ 0 ð6Þ
In Eq. (5) or (6), the parameter g controls the shape of the stress response surface of the material. The
influence of g on the ultimate stress response surface in p 0 � q space is presented in Fig. 4(a) and (b). It can
be observed that, when g < 2, the ultimate stress response surface becomes a bullet shape surface, see
Fig. 4(a), and when g > 2, it becomes a trump shape surface, Fig. 4(b). If g = 2 the classical ultimate stress
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response surface is attained. At the material ultimate stress state, by employing a least square procedure on
Eq. (5) or Eq. (6), parameter g can be determined. In this study, all the model parameters will be derived on
the basis of the modified form of the yield function.
2.1. Flow surface characteristics

Fig. 5(a) shows a schematic of the classical flow surface in the p 0 � q space. It is observed that the flow
surface is continuous and convex in the stress space. The convex shape of the surface means that positive
incremental plastic work is produced by an increment of stress resulting thus to a material with stable plas-
ticity response (Drucker, 1951). For triaxial compression states, the tip of the flow surface intersects the p 0

axis perpendicularly. This is necessary for ensuring that a state of pure hydrostatic stress will cause only
volumetric plastic deformation.

When a = 0, the intersection of the flow surface with the negative hydrostatic axis p 0 is at infinity. This is
named the material ultimate stress state. The locus of the ultimate stress state in the p 0 � q space is defined
by a line with peak stress ratio g = q/p 0 = M 0 in which q and p 0 are the deviatoric stress and effective mean
normal stress at material ultimate stress state, respectively. This line is called the ultimate state line (usl) and
it represents the maximum response in the stress–strain curves obtained from various stress paths.

Another important feature of the model is that for a 5 0 the locus of the apexes of the flow surface rep-
resents states of zero volume change after which the material starts to dilate. These states have been named
characteristic states. 1 The line (with stress ratio g =M in Fig. 5(a)) that connects these states is called the
critical state line (csl) in the critical state model and it separates the stress space into compression and dila-
tion regions. In the critical state model, once the state of stress has reached the critical state line, any sub-
sequent deformation of the material can occur without changes in volume.

Fig. 5(b) presents some characteristics of the model in the v–lnp 0 plane with v being the specific volume.
In this plane, which is also known as the ‘‘compression plane’’, for a given value of the stress ratio g = q/p 0,
the interrelation between the experimentally measured specific volume v and the logarithm of pressure is
plotted. For example, for a fully isotropic compression test, points A, B and C of Fig. 5(a) are plotted along
the line indicated as iso-ncl (i.e. isotropic normal compression line) in Fig. 5(b). Points D, E and F corre-
sponding to the csl of Fig. 5(a) are also shown in Fig. 5(b).
1 Even though this state is physically identical to the critical state of the model proposed by Roscoe et al. (1963), Luong (1982) and
Ibsen and Lade (1998), have named it ‘‘characteristic state’’.
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In the case of isotropic compression, upon unloading, the relation between p 0 and v is indicated by the
unloading reloading line (url), Fig. 5(b). The point of intersection of this line with the v axis indicates the
magnitude of the permanent volumetric deformation corresponding to the magnitude of the imposed iso-
tropic compression, i.e. A, B or C in Fig. 5.

According to Ibsen and Lade (1998), different deformation mechanisms are active in the two subspaces
in which the csl divides the stress space. Below the csl, the resistance to deformation is governed by sliding
friction due to the surface roughness of the particles or by the interlocking friction between particles. In the
subspace situated between the usl and the csl, the resistance to deformation is governed by disrupture of
interlocking and volumetric dilation.

When loose sand is tested under drained conditions, the volume continuously decreases until zero vol-
ume change when the critical state (denoted by c) is attained. On the other hand, for dense sand, the mate-
rial may first decrease in volume until a transient state of zero volume change (denoted also by c) is reached
at small strain magnitudes and, after that, the material dilates. Finally, beyond the ultimate stress state de-
noted by d, a state of zero volumetric change may again be attained indicated also by c in Fig. 6. It can thus
be concluded that during triaxial testing of some soil materials, a state of zero volumetric change can be
attained more than once.

In regards to material constitutive model, in contrast to the classical critical state model, the constitutive
model presented in the following sections is capable of simulating the response of frictional materials exhib-
iting either type of dilatant behaviour as shown in Fig. 6.
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2.2. Simulation of material hardening and softening behaviour

Most materials can exhibit increase of response beyond the elastic limit. This phenomenon is called hard-
ening, whereas behaviour is called softening when materials show a decrease in strength during progressive
straining after the peak strength is reached.
2.2.1. Material hardening

According to experimental evidence, it is generally known that during the process of incremental plastic
deformation, the yield surface changes size, shape and location. A law governing this aspect of response is
called the hardening rule. The manner in which hardening occurs for geotechnical materials can be quite
complicated. For this reason, some simplified assumptions must be made in the view of the numerical
implementation.

Mathematically, hardening is characterized by parameters that vary with the plastic loading history. The
hardening parameter is often a function of the effective plastic strain or plastic work. There are several
hardening rules that have been proposed to describe the growth of subsequent yield surfaces for mate-
rial hardening. These are: isotropic hardening, kinematic hardening and mixed hardening.

For quasi-static monotonic loading, the isotropic hardening model is appropriate for the representation
of material behaviour. In the case of reversals of loading, kinematic or mixed hardening may be more
appropriate. In this study only isotropic hardening is considered.

As discussed earlier, parameter a in the model controls the size of the flow surface, Fig. 1. When a de-
creases, the size of the surface increases and vice versa. According to the theory of plasticity, for an isotrop-
ically hardening material, the plastic deformations are associated with expansion of the flow surface.
Therefore, parameter a employed here for the constitutive model can be defined as a function of the plastic
deformation history. The actual functional form of a should be determined on the basis of laboratory tests.

The parameter a can be typically expressed in terms of internal variables such as the effective plastic
strain, the plastic work, the dissipated energy etc. It was found that use of the effective plastic strain pro-
vides a more consistent formulation than that of plastic work (Desai, 2001). Also it is relatively easier to
compute the effective plastic strain from available test data. Hence a is expressed as
a ¼ a n; nv; ndð Þ ð7Þ
in which the effective plastic strain n is defined on the basis of plastic strain increments depij as
n ¼
Z

ðdepijdepijÞ
1
2 ð8Þ
Obviously, the magnitude of the effective plastic strain n never decreases. nv and nd are the volumetric
and deviatoric components of n respectively. They can be expressed as
nd ¼
Z

ðdepij � depijÞ
1=2 ð9Þ

nv ¼
Z

1ffiffiffi
3

p � ðdepkk � de
p
kkÞ

1=2 ð10Þ
where deij is incremental deviatoric plastic strain tensor defined as
depij ¼ depij �
1

3
depkk � dij ð11Þ
and depkk is the incremental volumetric plastic strain. dij is the Kronecker d.
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The relationship between the effective plastic strain n and its deviatoric and volumetric components nd
and nv can be expressed as
n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2v þ n2d

q
ð12Þ
In a triaxial test, the corresponding deviatoric and volumetric components nd and nv in Eqs. (9) and (10)
can be expressed as
nd ¼
ffiffiffi
2

3

r
� ðep1 � ep2Þ ð13Þ

nv ¼
1ffiffiffi
3

p ðep1 þ 2ep2Þ ð14Þ
in which ep1 and ep2 are the incremental plastic strain in vertical and horizontal directions respectively.
By rearrangement of Eq. (12), the effective plastic strain n can be also expressed by
n ¼ nd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nv

nd

� �2
s

¼
ffiffiffi
2

3

r
� ðep1 � ep2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2
� ep1 þ 2ep2

ep1 � ep2

� �2
s

¼
ffiffiffi
2

3

r
� ðep1 � ep2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2
� ðsinwÞ2

r
ð15Þ
where w is the dilatancy angle which can be measured from the material volumetric response. Obviously,
the effective plastic strain n represents physically the accumulation of plastic strain associated with material
deviatoric and volumetric plastic deformations.

Several forms of a have been developed for description of the hardening response of various engineering
materials (Desai and Faruque, 1984; Desai et al., 1986). Based on laboratory observations for various stress
paths, material hardening response is influenced both by the coupled and uncoupled actions from volumet-
ric and deviatoric plastic deformations. For example, in a hydrostatic compression test, since the stress path
corresponding to this test remains along the hydrostatic axis, only volumetric plastic deformations are cre-
ated. On the other hand, for purely shear loading, there will be no volume change and the material will
experience only large shear deformations.

In order to take these observations into account, in the framework of this study, parameter a of the mod-
ified yield function in Eq. (5) is expressed as a function of both volumetric and deviatoric hardening com-
ponents, av and ad:
a ¼ gh � av þ ð1� ghÞ � ad ð16Þ

where
av ¼ a1 � eb1�nv ð17Þ

ad ¼ c1 � 1� ðM 0Þ2

27c
� nd

d1 þ nd

� �2

� 3pc
pa

� �ð2�gÞ
" #

ð18Þ

gh ¼
nv

nv þ nd
ð19Þ
av and ad are the volumetric and deviatoric hardening components respectively. a1, b1, c1, and d1 are hard-
ening parameters. The ratio gh in Eq. (19) denotes the contribution of volumetric hardening to the overall
material hardening response.

Details of the derivation of the mathematical expressions for av and ad including the determination of the
corresponding hardening parameters will be presented in Section 4. Since the derivation of both expressions
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is based on laboratory observations, the physical basis of each parameter in the expressions is quite clear
and each parameter links directly to the basic soil mechanical characteristics.

It can be observed, when volumetric and deviatoric behaviour are coupled, a can be determined directly
by using Eq. (16). For example, in a conventional triaxial compression (CTC) test simulation, Fig. 7 shows
the variations of a and its volumetric and deviatoric components ad and ad with respect to n. Since loading
along a CTC test stress path produces relatively more shear deformation than volumetric one, the volumet-
ric hardening function av decreases quicker than the deviatoric hardening function ad.

2.2.2. Material softening

Typical stress–strain behaviour for a soil under compressive loading is shown in Fig. 8(a). This figure
indicates that, for deformations beyond those corresponding to the ultimate strength (denoted by d), the
material undergoes softening (degradation) in its strength and stiffness. Nevertheless, it continues to carry
load until it approaches its residual strength at the critical state (denoted by c).

Theories of plasticity utilized to deal with the material softening behaviour belong to the continuum
mechanics approach. In this contribution, an isotropic measure of response flow surface degradation has
been introduced into the model to simulate the softening process. This adaptation of the model is achieved
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by means of specifying the variation of parameter a, after response degradation initiation, as an increasing
function of the monotonically varying equivalent post fracture plastic strain npf:
a ¼ aR þ gs � ðau � aRÞ ð20Þ

in which
gs ¼ e�j1�npf ð21Þ

and au and aR are the values of a corresponding to material ultimate stress response and residual stress state
respectively, see Fig. 8(a). The parameter j1 is a material parameter that determines the material degrada-
tion rate. The definition of npf is similar to the effective plastic strain n defined in Eq. (8). The difference is
that only incremental plastic strains after response degradation initiation are now taken into account.

The variation of a as a function of npf is shown in Fig. 8(b). At material degradation initiation, due to
rapid material softening, a increases quickly. As the state of residual response is approached, the variation
of a becomes insignificant and softening gradually ceases.

By relating a to a physically measurable quantity like the plastic strains, its functional form can be deter-
mined on the basis of laboratory tests. Also, with this simplified approach, only one parameter j1 needs to
be determined to characterize the material softening response.
3. Nonassociative model

The physical soil characteristics such as density, void ratio, water content and mineralogy can greatly
influence soil behaviour. Successful prediction of soil response depends on whether the material model used
can capture the significant characteristics of response under engineering conditions. The most significant
characteristics of soil response are the ultimate strength, the dilation or contraction, the hardening or sof-
tening response and the stress path dependence.

In the theory of plasticity, the direction of the incremental plastic strain is defined by the plastic potential
function Q. If the potential and flow functions coincide with each other, the incremental plastic strain is
then proportional to the gradient of the yield function F and the flow rule is called ‘‘associated’’. Otherwise,
if the plastic potential function Q and the yield function F are defined separately, the flow rule is called
‘‘nonassociated’’. In this case, the yield function F controls whether plastic deformations occur, while
the direction of the incremental plastic strain is evaluated on the basis of the plastic potential Q.

Both associated and nonassociated flow rules are commonly used with plasticity models for geotechnical
materials. For some materials such as metals and undrained cohesive soils, the use of the associated flow rule
is most common. On the other hand, for some frictional and cohesionless soils, material models incorporating
the associated flow rule usually exhibit plastic dilation that is larger than the one that is observed in laboratory
testing. In this case, it is necessary to employ a nonassociative flow rule for plasticity modelling.

In literature, several examples can be found of utilization of nonassociative rules to study the nonlinear
response of soil. For example, Poorooshasb et al. (1965) indicated that the incremental plastic strains ob-
tained from experimental results are not normal to the yield surface. Lade (1977), Prevost (1985) and Lacy
and Prevost (1987) assumed that the deviatoric components of plastic strain are normal to the deviatoric
trace of the failure surface. Lade et al. (1987, 1988) have discussed the consequences of using nonassociated
flow rules with geological materials.

In the hierarchical approach (Desai, 1980), a nonassociative model is obtained by defining the potential
function as a correction/modification to the yield function. This correction approach can be used to develop
models of various grades for characteristics such as associative and isotropic hardening, nonassociative, iso-
tropic and anisotropic hardening and strain softening response. In this study, focus is placed on nonasso-
ciative isotropic hardening and softening features.
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By utilizing the notion of correction of the yield function, the potential function Q is expressed as
Q ¼ F þ hðI1; J i; nÞ ð22Þ

in which F is the modified yield function defined in Eq. (5), h(I1,Ji,n) is a correction function of stress invar-
iants I1, Ji(i = 2,3) and n is the effective plastic strain defined in Eq. (8).

In the constitutive model, the size of Q is controlled by a hardening/softening parameter aQ defined as
aQ ¼ aþ ac ð23Þ

in which ac is a correction function expressed as
ac ¼ jcða0 � aÞð1� vvÞ ð24Þ

determined on the basis of experimental evidence. The parameter a0 in Eq. (24) is the value of a at the ini-
tiation of nonassociativeness.

In a soil triaxial test, the initiation of nonassociativeness may be assumed to occur after the hydrostatic
compression. Otherwise, a0 corresponds to the value of a at initiation of plastic response. The parameter vv
controls the contribution of volumetric plastic deformation to the expansion of the potential surface and is
defined by
vv ¼
nv
n

ð25Þ
where nv is the volumetric component of effective plastic strain n. The parameter jc in Eq. (24) is the only
extra material parameter that needs to be determined to capture material nonassociative behaviour.

Thus, the plastic potential Q in Eq. (22) is written in I1 � J2 space as
Q ¼ J 2

p2a
� �aQ � I1 þ R

pa

� �n

þ c � I1 þ R
pa

� �g� �
� F s ð26Þ
where Fs is defined in Eq. (2). Similarly Eq. (26) can be also expressed in p 0 � q space as
Q ¼ q2

3p2a
� �aQ � 3p0

pa

� �n

þ c � 3p0

pa

� �g� �
� F s ð27Þ
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It can be observed that for isotropically hardening material subject to hydrostatic compression loads,
vv = 1 in Eq. (25) and hence aQ = a in Eq. (23). This means that nonassociativeness does not occur under
a hydrostatic compression condition. For the case of jc = 0, the potential function Eq. (26) yields Q = F

indicating that the associative model is a special case of the nonassociative one.
Fig. 9 illustrates the basic notion of the proposed model. As shown, to every point along the stress path

correspond a yield Fi and a potential surface Qi. The incremental plastic strain vector along the stress path
is shown as normal to the potential surfaces. Depending on the direction of the incremental plastic strain
vector, soil plastic dilation or contraction is predicted.

In the model verification, the benefits of using this nonassociative model to simulate the mechanical re-
sponse of Eastern Scheldt sand are shown.
4. Model parameters determination procedure

The accuracy of any numerical simulation depends on the capabilities of the constitutive model but, also,
on the quality of the associated material parameters. In this section emphasis is placed on the general pro-
cedure for the determination of the material parameters of the constitutive model presented in the foregoing
sections. The model is calibrated on the basis of triaxial test results (Cheng et al., 2001) on ‘‘Eastern
Scheldt’’ sand. Comparisons of model predictions and laboratory measurements for various stress paths
are presented.
4.1. Parameters b, c and R

At material ultimate stress state, a = 0, the yield function in Eq. (5) can be written as
J 2

p2a
� c � I1 þ R

pa

� �g

� ð1� b � cos 3hÞ�1=2 ¼ 0 ð28Þ
which can be expressed in terms of deviator stress q and effective stress p 0 as
q ¼ pa �
ffiffiffiffiffi
3c

p
� 3p0

pa

� �g=2

ð1� b cos 3hÞ�1=4 ð29Þ
Obviously, in Eq. (29) two parameters c and b are required for defining the material ultimate response.
To obtained the parameters c and b, two tests are necessary. One is the triaxial compression (TC) test

and the other is the triaxial extension (TE) test. During triaxial compression tests, the stress paths are in
the radial direction at Lode angle h = 0�, hence Eq. (29) can be written as
qTC ¼ pa �
ffiffiffiffiffi
3c

p
� 3p0TC

pa

� �g=2

ð1� bÞ�1=4 ð30Þ
Similarly, during TE tests, the stress paths are in the radial direction at Lode angle h = 60�, hence Eq.
(29) can be expressed as
qTE ¼ pa �
ffiffiffiffiffi
3c

p
� 3p0TE

pa

� �g=2

ð1þ bÞ�1=4 ð31Þ
Fig. 10 shows a schematic of the ultimate surface on p 0 � q space for g = 2 in the yield function. The
slope of the ultimate surface varies with the stress paths. In the TC stress path, the slope is equal to
3
ffiffiffiffiffi
3c

p
� ð1� bÞ�1=4 and in the TE test the slope is equal to 3

ffiffiffiffiffi
3c

p
� ð1þ bÞ�1=4.
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Considering Eqs. (30) and (31), the parameter b can be expressed as
b ¼
qTC
qTE

� �4
� p0

TC

p0
TE

� �2g
qTC
qTE

� �4
þ p0

TC

p0
TE

� �2g ð32Þ
Using Eqs. (30) and (31), parameter c can be computed as
c ¼
ffiffiffi
2

p

3p2a � 3
pa

� �g ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02g
TC

q4
TC

þ p02g
TE

q4
TE

r ð33Þ
When b = 0, the trace of the surface on the octahedral plane is circular. Hence the surface becomes Lode
angle independent. In this case c can be derived from Eq. (30) as
c ¼ q2TC
3p2a

� pa
3p0TC

� �g

ð34Þ
Parameter R represents the material triaxial strength in tension. It denotes the distance from the origin of
the intersection of the ultimate surface with the p 0 axis (see Fig. 5(a)). R can be determined by
R ¼ c2=gð1� bÞ1=2gffiffiffiffiffi
3cg

p
� pð2=g�1Þ

a

ð35Þ
where c is the intercept along the q axis at p 0 = 0 and it represents the cohesive strength of the material.

4.2. State change parameter n

Parameter n is related to the state of stress at which the volumetric response changes from compaction to
dilation. It is related to the apex point on the yield surface (Fig. 5(a)), where oF/oI1 = 0. This condition
leads to
oF
oI1

¼ 1

pa
� a � n � I1 þ R

pa

� �n�1

� c � g � I1 þ R
pa

� �g�1
" #

ð1� b � cos 3hÞ�1=2 ¼ 0 ð36Þ
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Hence
2 A
c � g
an

¼ I1 þ R
P a

� �n�g

ð37Þ
The modified yield function Eq. (5) can be rewritten as
J 2

P 2
a

� I1 þ R
P a

� �g

� �a � I1 þ R
P a

� �n�g

þ c

� �� 	
� ð1� b � cos 3hÞ�1=2 ¼ 0 ð38Þ
Substituting Eq. (37) into Eq. (38) results
J 2

P 2
a

� I1 þ R
P a

� �g

� c 1� g
n

� �� 	
� ð1� b � cos 3hÞ�1=2 ¼ 0 ð39Þ
Therefore, n in Eq. (39) can be expressed as
n ¼ g

1� J2
I1þR
pað Þg �c�p2a�ð1�b�cos 3hÞ�1=2

ð40Þ
Eq. (40) can also be written in terms of deviator stress q and effective stress p 0 as
n ¼ g

1� q2

3c�ð3p0Þg �p2�g
a ð1�b�cos 3hÞ�1=2

ð41Þ
According to the discussion in Section 2, dense and loose sands or overconsolidated and normally con-
solidated clays have different dilation behaviour. It can be assumed that the characteristic state of dense
sand or the ultimate stress state of loose sand is associated with the moment when the soil begins to dilate,
Fig. 6.

From experimental results, the values of the deviator stress q and the effective stress p 0 can be measured
at points of material volumetric change. Hence, by substitution of these values into Eq. (41), parameter n
can be obtained.

4.3. Parameter a for material hardening simulation

As indicated in the foregoing section, the model hardening parameter a in Eq. (16) is influenced by the
coupled action of volumetric and deviatoric plastic deformations. It may be expressed in terms of volumet-
ric and deviatoric hardening components av and ad respectively. a1, b1, c1, and d1 are the hardening para-
meters required to be determined. The individual expressions of these parameters can be determined
by standard laboratory tests.

4.3.1. Determination of a1 and b1
The volumetric hardening function av and its corresponding parameters a1 and b1 can be determined on

the basis of exclusively isotropic compression stress paths.
In Fig. 11(a), the yield surfaces of a soil material at two states of stress are plotted in the p 0 : q space. The

isotropic compression stress states are located at the tip of the yield surface e.g. points A and B. 2 Points A
and B are also plotted on the compression plane, Fig. 11(b). On this plane, a change in p 0 from A to B, leads
to a change in volume. From Fig. 11(b), the plastic irrecoverable change of specific volume v between com-
pression state p0A and p0B can be expressed as
s shown in Fig. 11(a), an important characteristic of the yield surface is that it intersects the compressive p 0 axis at right angles.
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Dvp ¼ k � ln p0B
p0A

� �
� j � ln p0B

p0A

� �
ð42Þ
where the first term of Eq. (42) represents the total volume change occurring as p 0 is increased from A to B,
and the second term is the elastic recoverable volume change when p 0 is reduced. The superscript p in the
above equation denotes a plastic component.

Furthermore, Eq. (42) can be rearranged as
Dvp ¼ ðk� jÞ � ln p0B
p0A

� �
ð43Þ
In differential form Eq. (43) can be written in generalized form as
dvp ¼ ðk� jÞ � dp
0
0

p00
ð44Þ
where p00 represents the mean effective stress at the tip of the yield surface during material isotropic
compression.

The incremental specific volume dvp produces incremental plastic volumetric strain:
depv ¼
dvp

v
ð45Þ
Substituting dvp from Eq. (44), the incremental plastic volumetric strain in Eq. (45) can be rewritten as
depv ¼ ðk� jÞ � dp00
v � p00

¼ k� j
1þ e

� dp
0
0

p00
ð46Þ
where e is the void ratio of the material at p00.
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By integrating Eq. (46) from p0A to p0B, the corresponding plastic volumetric strain can be obtained as
epv ¼
k� j
1þ e

�
Z p0

B

p0
A

dp00
p00

¼ k� j
1þ e

� ln p0B
p0A

ð47Þ
Hence, the mean effective stress p0B in Eq. (47) can be expressed as
p0B ¼ p0A � e 1þe
k�jð Þ � epv ð48Þ
Since p0B is at the intersection of the yield surface with the hydrostatic axis p 0, it can also be obtained by
setting q = 0 in the yield function, hence:
p0B ¼ pa
3
� av

c

� � 1
g�n

� ð49Þ
Substituting Eq. (49) into Eq. (48), the volumetric hardening function av can be derived as
av ¼ c � 3p0A
pa

� �ðg�nÞ

� e
ð1þeÞðg�nÞ

k�k �epv ð50Þ
Assuming p0A ¼ pc where pc is the soil pre-consolidation pressure and considering the definition of effec-
tive volumetric plastic strain nv in Eq. (14), av in Eq. (50) can be written as
av ¼ c � 3pc
pa

� �ðg�nÞ

� e
ffiffi
3

p
�ð1þe0Þðg�nÞ

k�k �nv ð51Þ
where e0 is the void ratio at pc.
Hence, parameters a1 and b1 in Eq. (17) can be expressed as
a1 ¼ c � 3pc
pa

� �ðg�nÞ

ð52Þ

b1 ¼
ffiffiffi
3

p
� ð1þ e0Þðg � nÞ

k� k
ð53Þ
Apparently, all quantities in Eq. (52) and (53) can be determined easily by standard soil triaxial tests.

4.3.2. Determination of c1 and d1
In a CTC test for sand, the relationship between the plastic shear strain and the effective stress ratio can

be formulated as a hyperbolic function (Duncan and Chang, 1970; Vermeer, 1980):
ep1 � ep2 ¼
p0

pa

� �h1

� h2 �
q=p0

M 0 � q=p0

� �
ð54Þ
where ep1 and ep2 stand for the principle plastic strains,M 0 ¼
ffiffiffiffiffiffiffi
27c

p
is the peak stress ratio and h1, h2 are mate-

rial constants which can be obtained by comparing the results of the tests with different confining pressures.
On a physical basis, these two constants correspond to the index of pressure sensitivity and plastic flow with
respect to shear strain hardening behaviour.

According to Eq. (13), the total deviatoric effective plastic strain nd can be written as
nd ¼
ffiffiffi
2

r
� ep1 � ep2ð Þ ð55Þ
3
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Substituting Eq. (55) into Eq. (54), the deviatoric effective plastic strain nd can be expressed in terms of
the effective stress ratio q/p 0 as
nd ¼
ffiffiffi
2

3

r
� p0

pa

� �h1

� h2 �
q=p0

M 0 � q=p0

� �
ð56Þ
By assuming p 0 = pc, where pc is the soil pre-consolidation pressure, the following expression is derived
from Eq. (56):
q
pc

� �2

¼ nd
d1 þ nd

� �2

� ðM 0Þ2 ð57Þ
in which
d1 ¼
ffiffiffi
2

3

r
� h2 �

pc
pa

� �h1

ð58Þ
Furthermore, by rearranging the yield function, the following expression can be obtained:
a
3pc
pa

� �n�2

¼ c
3pc
pa

� �g�2

� 1

27
� q

pc

� �2

ð59Þ
Finally, by substituting Eq. (57) into Eq. (59), the expression of deviatoric hardening parameter ad is
derived as
ad ¼ c1 � 1� M 0ð Þ2

27c
nd

d1 þ nd

� �2
3pc
pa

� �2�g
" #

ð60Þ
with
c1 ¼ c � 3pc
pa

� �ðg�nÞ

ð61Þ
Parameters c1 in Eq. (61) and d1 in Eq. (58) can be determined easily on the basis of standard soil triaxial
tests. By comparing Eq. (52) and Eq. (61), it can be observed that a1 and c1 are identical. Therefore the total
material hardening parameters in Eq. (16) are reduced from four to three.

4.4. Parameter a for material softening simulation

As discussed in foregoing section, after a material reaches its ultimate response, softening (degradation)
starts.

The softening process can be simulated by specifying the expression of a in the form of a growth
function:
a ¼ gs � au þ 1� gsð Þ � aR ð62Þ

in which
gs ¼ e�j1�npf ð63Þ

where au and aR are the values of a corresponding to material ultimate stress response and material residual
stress state respectively, Fig. 12(a). Parameter j1 determines the material degradation rate and npf is the
post fracture equivalent plastic strain. The value of npf is computed from:
npf ¼
Z

depij � depij

 �1=2 ð64Þ
where depij are the incremental plastic strains measured after material degradation initiation.
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In order to determine parameter j1 in Eq. (63), Eq. (62) can be written as
a� aR
au � aR

¼ e�j1�npf ð65Þ
By taking the logarithm of both sides of Eq. (65), it results:
� ln
a� aR
au � aR

� �
¼ j1 � npf ð66Þ
The plot of �ln [(a � aR)/(au � aR)] versus npf provides the value of j1 as the slope of the line that inter-
sects the origin of the coordinate system, Fig. 12(b). Hence, from Eq. (66), j1:
j1 ¼ � 1

npf
� ln a� aR

au � aR

� �
ð67Þ
By rearranging the yield function, Eq. (6), the values of both aR and au can be computed by
a ¼
c 3p0

pa

� �g�2

� 1
27
� q

p0

� �2
� ð1� b � cos 3hÞ1=2

3p0

pa

� �n�2
ð68Þ
If the material residual stress state coincides with the material critical stress state, the stress ratio in Eq.
(68) is typically expressed as q/p 0 = M. Hence aR in Eq. (68) can be expressed as
aR ¼
c 3p0

pa

� �g�2

� 1
27
� ðMÞ2 � ð1� b � cos 3hÞ1=2

3p0

pa

� �n�2
ð69Þ
When the trace of the surface on the octahedral plane is circular, (i.e. b = 0), the simplified form of aR is:
aR ¼
c 3p0

pa

� �g�2

� 1
27
� ðMÞ2

3p0

pa

� �n�2
ð70Þ
According to the discussion in the foregoing section, when a = 0, intersection of the yield surface with
the hydrostatic axis p 0 is at negative infinity. This represents the ultimate yielding of a material point asso-
ciating au with a = 0.
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By means of Eq. (69)or Eq. (70), parameter j1 in Eq. (67) can be determined experimentally on the basis
of the response degradation stress strain curve.

4.5. Nonassociative parameter jc

In the case of nonassociated plasticity, the plastic potential function Q is expressed as
Q ¼ J 2

p2a
� �aQ � I1 þ R

pa

� �n

þ c � I1 þ R
pa

� �g� �
� F s ð71Þ
where Fs is defined in Eq. (2) and
aQ ¼ aþ jcða0 � aÞð1� vvÞ ð72Þ

On the basis of the procedures described by Frantziskonis et al. (1986), the nonassociative parameter jc

is determined as follows.
According to the flow rule, the incremental plastic strain depij is given as
depij ¼ dk � oQ
orij

ð73Þ
Therefore, the corresponding incremental forms of the volumetric plastic strain depv and one of the prin-
ciple plastic strains dep11 can be written as
depv ¼ 3dk � oQ
oI1

ð74Þ

dep11 ¼ dk � oQ
or11

ð75Þ
The ratio of Eqs. (74) and (75) yields:
# ¼ depv
dep11

¼
3 oQ

oI1
oQ
or11

ð76Þ
# can be obtained from a shear test as the slope of the observed epv versus e
p
1 response at peak, e.g. point d in

Fig. 13(b).
The derivatives of the plastic potential Q in Eq. (71) with respect to the principal stress r11 and the stress

invariant I1 are:
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Fig. 13. Schematic of soil shear stress and volumetric strain versus axial strain.
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oQ
or11

¼ oQ
oI1

þ oQ
oJ 2

� s11 þ
oQ
oJ 3

� slk � skl �
2

3
� J 2

� �
ð77Þ

oQ
oI1

¼ � 1

pa
�aQ � n � I1 þ R

pa

� �n�1

þ c � g � I1 þ R
pa

� �g�1
" #

� F s ð78Þ
in which sij = rij � 1/3 Æ I1 Æ dij and dij is the Kronecker delta.
Substitution of Eqs. (77) and (78) into Eq. (76) leads to:
3 � oQ
oI1

¼ # � oQ
oI1

þ oQ
oJ 2

� s11 þ
oQ
oJ 3

� slk � skl �
2

3
� J 2

� �� �
ð79Þ
The plastic potential Q in Eq. (71) can be also expressed as
Q ¼ F þ aQ � I1 þ R
pa

� �n

� F s ð80Þ
with F ¼ J2
p2a
� c � I1þR

pa

� �g
� F s.

Substituting Eq. (80) into Eq. (79) leads to:
aQ � 3� #ð Þ � n
pa

� F s �
I1 þ R
pa

� �n�1

� # � I1 þ R
pa

� �n

� s11 �
oF s

oJ 2

� # � I1 þ R
pa

� �n

� slk � skl �
2

3
� J 2

� �
� oF s

oJ 3

" #

¼ # � s11 �
oF
oJ 2

þ # � slk � skl �
2

3
� J 2

� �
� oF
oJ 3

� 3� #ð Þ � oF
oI1

ð81Þ
Assuming
X ¼ 3� #ð Þ � n � F s �
I1 þ R
pa

� �n�1

� # � I1 þ R
pa

� �n

� s11 �
oF s

oJ 2

� # � I1 þ R
pa

� �n

� slk � skl �
2

3
� J 2

� �
� oF s

oJ 3

ð82Þ

and
Y ¼ # � s11 �
oF
oJ 2

þ # � slk � skl �
2

3
� J 2

� �
� oF
oJ 3

� 3� #ð Þ � oF
oI1

ð83Þ
in which
oF s

oJ 2

¼ o

oJ 2

1� 3
ffiffiffi
3

p

2
b � J 3 � J

�3
2

2

 !�1
2

¼ � 9
ffiffiffi
3

p

8
b � J 3 � J

�5
2

2 � 1� 3
ffiffiffi
3

p

2
b � J 3 � J

�3
2

2

 !�3
2

ð84Þ

oF s

oJ 3

¼ o

oJ 3

1� 3
ffiffiffi
3

p

2
b � J 3 � J

�3
2

2

 !�1
2

¼ 3
ffiffiffi
3

p

4
b � J�3

2
2 � 1� 3

ffiffiffi
3

p

2
b � J 3 � J

�3
2

2

 !�3
2

ð85Þ

oF
oI1

¼ � cg
p

� I1 þ R
p

� �g�1

� F s ð86Þ

a a
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oF
oJ 2

¼ 1

p2a
� c � I1 þ R

pa

� �g

� oF s

oJ 2

ð87Þ

oF
oJ 3

¼ �c � I1 þ R
pa

� �g

� oF s

oJ 3

ð88Þ
Therefore Eq. (81) can be written as
aQ ¼ Y

X
ð89Þ
By substitution of Eq. (89) into Eq. (72), the parameter jc related to the nonassociative behaviour can be
determined as
jc ¼
aQ � a

a0 � að Þ � 1� vvð Þ ð90Þ
Experimentally jc can be determined by utilizing a number of tests along different stress paths.
5. Model verification

5.1. Test material and test method

In order to verify the proposed constitutive model, Eastern Scheldt sand was chosen as the test material.
This sand is obtained from Eastern Scheldt in the Netherlands, which consists of 95% quartz and 5% glauc-
onite. The shape of the grains of the sand can be characterized as subrounded. The classification properties
of Eastern Scheldt sand are summarized in Table 1 (Cheng et al., 2001).

In this study, Eastern Scheldt sand was chosen as the test material because several dams have been con-
structed in the recent past in the Eastern Scheldt region of the Netherlands for reasons of environmental
protection, safety and water control. In each of these dams, at three locations, closure gaps were con-
structed, that were finally closed by sand. Therefore, the investigation of the mechanical response of this
type of sand and its failure response became of importance.

The tests were carried out in the laboratory of GeoDelft by using the triaxial test apparatus shown in
Fig. 14 and reported in Cheng et al. (2001). Measurements of axial load, axial displacement, cell pressure
and volume change were collected and processed.

The tests were performed on medium dense and dense sand specimens with relative densities of Dr = 0.4
and 0.7 respectively. The medium dense sand specimens (MF series) were prepared in a cylindrical split
mould by air pluviation with average initial void ratio of e0 = 0.725. The dense sand specimens (DF series)
were prepared in the same type of mould by the multi-stages vibration method with average initial void
ratio of e0 = 0.625. Both of the preparation methods achieved very reproducible densities.

The specimen was encased by a flexible membrane and two end caps. Thus the confining fluid did not
penetrate the pore space. In order to keep the homogeneity of the specimen during testing, lubricated ends
1
cation properties for Eastern Scheldt sand

ties Values Properties Values

c gravity, Gs 2.65 Mean grain size, D50 0.156mm
void ratio, emax 0.859 D60 0.17mm
oid ratio, emin 0.528 Uniformity coefficient, D60/D10 1.7



Fig. 14. Triaxial test apparatus. (a) details of the device; (b) laboratory test setup.
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were used to minimize end restraint effects. The lubrication layer is composed of a layer of grease (30–
50lm) and a latex disk (200lm).

During the tests, the axial force and displacement were measured, as well as the cell pressure and the
pore water pressure. Before starting the shear loading, the saturated specimen was first consolidated iso-
tropically at a loading rate of 3kPa per minute. Afterwards, the specimen was sheared at a constant axial
strain rate 3% per hour for conventional compression tests and at a constant axial stress rate of 3kPa per
minute for stress control tests.

All the specimens were sheared into the softening region. Unloading and reloading stress paths with a
stress rate of 10kPa per minute were imposed on some dense sand specimens during consolidation and
shearing tests. Additionally three quick loading tests with strain rate of 0.4% per minute (strain controlled)
and 12kPa per minute (stress controlled) were carried out for studying the influence of loading rate on
material characteristic states.

Cylindrical specimens were utilized with a height and diameter of approximately 66mm. A few speci-
mens with a slenderness ratio of 2 were tested for reference. During the consolidation and shearing process,
the specimen was fully drained (open valves).

In order to investigate the influence of initial conditions and of the stress path on the material para-
meters, two initial consolidation pressures (150 and 400kPa) and three different stress paths, i.e. CTC,
TC and RTC, Fig. 15, are investigated experimentally.

This stress path is perpendicular to the p 0 axis. Since these three stress paths include most of the main
loading directions in the compression space, they are sufficient to characterize the compression behaviour
of the material. Table 2 lists all test series numbers with the corresponding stress paths and the initial con-
solidation pressures. These series numbers will be utilized in the next section to indicate corresponding tests.

5.2. Material parameters evaluation for eastern Scheldt sand

Table 3 summarizes the test results conducted along three stress paths at peak response and character-
istic state. Details of the experimental results can be found in the report by Cheng et al. (2001).

As expected, in Table 3, sands tested at a lower relative density (MF test series) but with the same
confinement, exhibit lower ultimate strength than those at higher relative density (DF test series). It is also



Table 3
Results at peak response and characteristic state of Eastern Scheldt sand

Stress path Test no. qul (kPa) p0ul (kPa) M0 /ul qcl (kPa) p0cl (kPa) M /cl

CTC MF1 401.86 283 1.42 35.0 343 263 1.30 32.3
MF2 1080.6 761 1.42 35.0 919 706 1.30 32.3
DF1 513 317 1.62 35.7 322 253 1.27 31.6
DF4 1197 801 1.5 36.8 801 668 1.20 30.0

TC MF5 240.25 155 1.55 38.0 207 154 1.34 33.2
MF6 – – – – 505 406 1.29 32.1
DF3 273 154 1.79 37.8 194 151 1.29 32.1
DF6 669 411 1.63 40.0 490 409 1.22 30.5

RTC MF3 119.14 74 1.61 39.4 98 86 1.14 28.6
MF4 303 202 1.5 36.8 269 231 1.13 28.4
DF2 120 65 1.84 44.7 91 84 1.08 27.3
DF5 348 203 1.72 41.9 277 237 1.17 29.3

150kPa 400kPa

3
2 1

3
3

2 1
3

q

p’ 

RTCRTC

CTCCTC

TCTC

Fig. 15. Stress paths and stress level plotted in p 0 � q stress space.

Table 2
List of stress paths and test series numbers

Type of sand Medium dense Dense

Stress path CTC RTC TC CTC RTC TC

Initial confining pressure (kPa) 150 MF1 MF3 MF5 DF1 DF2 DF3
400 MF2 MF4 MF6 DF4 DF5 DF6
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observed that medium dense sands dilate at a higher stress level than dense sands. This is because compac-
tion in a loose material continues until no further volume decrease, after which the material begins to dilate.
However, for dense materials, dilation initiates from the early stages of shear loading because there is not
much void space in the material for compaction.

Fig. 16 shows the experimentally measured state of stress at peak response (filled symbols) and the char-
acteristic state (non-filled symbols) in the p 0 � q space. A quite pronounced linearity is observed for the
characteristic state but not for the ultimate stress state. It can be observed in Fig. 17 that experimentally
measured ultimate stress state cannot be represented by a straight line (dash line) but by a curved one (solid
line). This means that the constant value of parameter c in classical yield function cannot be utilized to de-
fine the ultimate stress state of the material. It becomes a stress path dependent variable.

In order to make the c parameter stress path independent we have to change the shape of the yield
surface. This can be done by introducing the extra parameter g in the classical formulation, see section
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2. In this way, for g < 2 the stress response surface has a bigger slope closer to the value p = 0, and the slope
decreases gradually as p increases. The result of this approach is the fact that under different stress paths the
constant value of parameter c can be utilized for characterizing the ultimate stress state of the same type of
sand.

The procedure used for finding the parameter g and the unique value of c consists of the following. The
modified yield function in Eq. (6) at ultimate stage on compressive meridian plane can be written as
F ¼ q2

3pa
� c

3p0

pa

� �g

¼ 0 ð91Þ
The terms of the yield function can be manipulated in order to obtain an equation that can be worked
with easier, Eq. (92).
q ¼
ffiffiffiffiffiffiffiffiffi
3p2ac

q 3p0

pa

� �g=2

ð92Þ
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Also this equation can be written in the form as in Eq. (93).
Fig. 18
and (d
y ¼ a � xb ð93Þ

where
a ¼
ffiffiffiffiffiffiffiffiffi
3p2ac

q
; b ¼ g=2; x ¼ 3p0=pa: ð94Þ
The values of x and y can be obtained from laboratory test data. By using the least square method one
can obtain the values of a and b in Eq. (94) and consequently the values of c and g can be determined by
c ¼ a2

3p2a
; g ¼ 2b ð95Þ
Fig. 18(a) through (d) present the plots in x–y space of the least square method approximations of
parameters c and g.

On the basis of the parameter determination procedure that was presented in the previous section, for
some individual tests, the hardening parameters are computed and shown in Table 4.

In Fig. 19, the influence of the material initial relative density on the parameter n is shown. It can first of
all be observed that parameter n is indeed influenced by the initial state of the sand and secondly, that lower
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Table 4
Material hardening parameters determined on the basis of different stress path

Stresspath Test no. n g c a1 b1 d1

CTC MF1 9.49 1.775 0.1215987 1.11E�06 �7683 9.6E�03
MF2 11.96 1.931 0.0925598 1.397E�12 �9988 8.53E�03
DF1 5.04 1.795 0.1545582 1.17E�03 �3044 5.53E�03
DF4 4.48 1.778 0.1682217 2.04E�04 �2534 7.11E�03

TC MF5 9.49 1.775 0.1215987 1.11E�06 �7683 9.6E�03
MF6 11.96 1.931 0.0925598 1.397E�12 �9988 8.53E�03
DF3 5.04 1.795 0.1545582 1.17E�03 �3044 5.53E�03
DF6 4.48 1.778 0.1682217 2.04E�04 �2534 7.11E�03

RTC MF3 9.49 1.775 0.1215987 1.11E�06 �7683 9.6E�03
MF4 11.96 1.931 0.0925598 1.397E�12 �9988 8.53E�03
DF2 5.04 1.795 0.1545582 1.17E�03 �3044 5.53E�03
DF5 4.48 1.778 0.1682217 2.04E�04 �2534 7.11E�03

n = -19.89*Dr + 18.681
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Fig. 19. Plot of n versus Dr.
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values of n result for increasing values of Dr. Since the yield surface with lower n can produce more plastic
dilation, see Fig. 2, hence the dense material exhibits more dilatation response than the lower one.

Similarly, Fig. 20 shows also the influence of the material initial relative density on the value of para-
meter c. It can be observed that for both initial confining pressures, 150 and 400kPa, the parameter c
increases with Dr. For higher initial consolidation pressure the value of c grows faster than for lower pres-
sures. It can be concluded that the ultimate stress response of the sand is influenced strongly by its initial
confining pressure. To properly quantify the influence of the material initial state on the values of n and c, a
more extensive experimental investigation still needs to be done.
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
xpf

CTC

RTC

TC

- 
In

 [
(α

 –
 α

R
) 

/ (
α u

 –
 α

R
)]

  

Fig. 21. Plot of �ln[(a � aR)/(au � aR)] versus npf to obtain j1 for Eastern Scheldt sand (pc = 150kPa, DF1, DF2, DF3).

CTC

RTC

TC

CTC

RTC

TC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.02 0.04 0.06 0.08 0.1 0.12

xpf

- 
In

 [
(α

 –
 α

R
) 

/ (
α u

 –
 α

R
)]

  

Fig. 22. Plot of �ln[(a � aR)/(au � aR)] versus npf to obtain j1 for Eastern Scheldt sand (pc = 400kPa, DF4, DF5, DF6).



X. Liu et al. / International Journal of Solids and Structures 42 (2005) 1849–1881 1877
In Figs. 21 and 22 the experimentally measured relation between npf and �ln[(a � aR)/(au � aR)] is
shown for different stress paths and initial levels of confining pressure. From Eq. (67), the average slope
of these curves is defined as j1. It is observed that sand loaded along a TC stress path exhibits a higher
degradation rate than sand loaded along the other two stress paths. Furthermore, lower degradation rates
always seem to occur along the RTC stress path. Additionally, the degradation rate in a TC test is more
pronounced when the specimen is subjected to higher initial confining pressure.

The reason for higher material response degradation along TC stress paths is that along this stress path
the material approaches its residual strength quicker. This can also be explained by the characteristics of the
constitutive model. As indicated in Fig. 6, the material is more sensitive to deviatoric than volumetric
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Fig. 23. Comparisons of stress–strain and volumetric response of CTC test with nonassociative flow rules (pc = 400kPa, DF4).
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plastic strain components. Along a TC stress path significant deviatoric deformations are produced, leading
thus to faster material degradation.

5.3. Numerical predictions and experimental results

Both the capability of the model and the accuracy of the parameter determination of the constitutive
model can be examined by comparing the numerical predictions of the material response with the observed
laboratory behaviour. Figs. 23–29 present the comparisons of the numerical predictions with the experi-
mental results in terms of stress–strain curves and volumetric response for CTC, TC and RTC tests under
different initial confining pressures. The model parameters utilized for each comparison are determined on
the basis of the modified form of the yield function.
-0.30

0.00

0.30

0.60

0.90

1.20

1.50

1.80

2.10

-1.0% 0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0%

axial strain

st
re

ss
 r

at
io

 q
/p

'

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

vo
lu

m
et

ri
c 

st
ra

in

experiment

numerical

experiment

numerical

Fig. 25. Comparisons of stress–strain and volumetric response of RTC test with nonassociative flow rule (pc = 400kPa, DF5).
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Fig. 26. Comparisons of stress–strain and volumetric response of TC test with nonassociative flow rule (pc = 400kPa, DF6).
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Fig. 27. Comparisons of volumetric response of CTC test with different flow rules (pc = 400kPa, DF4).
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Fig. 28. Comparisons of volumetric response of RTC testwith different flow rules (pc = 400kPa, DF5).
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It is observed that the numerical predictions obtained from the constitutive model show good agreement
with the experimental results, Figs. 23–26.

The plots of the volumetric response calculated with different flow rules, Fig. 27–29, show that the model
based on the associative plasticity does not show good comparison with the actual observed behaviour. By
utilizing an associative flow rule, the model produces an overestimation of the plastic volume strain, espe-
cially at stress levels close to the ultimate stress state where excessive dilation can be observed. By correcting
the yield function to account for nonassociative plasticity, the model shows good comparison with the ob-
served behaviour in terms of both, stress–strain and volumetric response.

It can be concluded that the nonassociative model is more appropriate for description of the actual mate-
rial behaviour. The numerical results indicate that, once the appropriate material parameters are available,
the model is capable of describing the material response along various stress paths in both the hardening
and the softening regimes.
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6. Conclusions

In this contribution, on the basis of the hierarchical approach, a constitutive model for the soil response
in the elastoplastic range has been developed.

The following conclusions may be drawn:

1. The constitutive model is capable of simulating the mechanical characteristics of the material under dif-
ferent stress paths. Utilization of a nonlinear ultimate response surface proved to be a key element in
ensuring stress path independency.

2. The hardening parameters employed for isotropic hardening response have been defined as a function of
the deformation history. Both volumetric and deviatoric hardening components have been introduced
explicitly into the material hardening simulation. An isotropic measure of response flow surface degra-
dation has been introduced into the model to simulate material softening (degradation) by means of
specifying parameter a, after response degradation initiation, as an increasing function of the equivalent
post fracture plastic strain.

3. An important feature of the model is the existence of two stress state lines, i.e. characteristic state line
and ultimate state line, which can provide a realistic representation of the mechanical behaviour of geo-
technical materials under engineering conditions.

4. The nonassociative model has been established based on a concept in which the potential function is
obtained by a correction/modification of the yield function. This method simplifies the determination
of the plastic potential function and it introduces only one extra parameter to account for the material
nonassociative behaviour.

5. The model based on a nonassociative flow rule is more appropriate for description of the actual
material behaviour. By correcting the yield function to account for nonassociative plasticity, the
model shows good comparison with the observed behaviour both in stress–strain and volumetric
response.

6. According to the experimental results, some model parameters such as n,c are the material initial state
dependent. However, to quantify properly the influences of the initial state path on these parameters,
extensive experimental investigations still need to be done.
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The experimental study described in this contribution is a preliminary study. It presents possible direc-
tions for further computational and experimental research.
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